Department:

User Name;

w^S-c^

File Name:

 $ivv-i:_{-}$.SSI

Diskette Number: Λ_t

Section: ^

Please retain this stub and submit it with your work when requesting services

Word Processing Centre - Extension 283

OMU1. I »_.UI_1-i:-U[. ui rvrri-iuu ru\ij u i L-V^MH>^I-I-'%-I i

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:

MATHEMATICS

Code No.:

MTH 551

Program:

ELECTRICAL/ELECTRONIC TECHNOLOGY; COMPUTER ENGINEERING

Semester:

III

Date:

JULY, 1983

Author:

J. REAL

New:

Revision:

APPROVED:

Chairperson

Date^-^

MATHEMATICS MTH 551

Course Name Course Number

PHILOSOPHY/GOALS:

When the student has successfully completed this course he/she will have demonstrated an acceptable understanding of the course material as listed elsewhere.

The student should then be able to apply this knowledge in his/her studies of other courses in the program where there are applications of these mathematical concepts.

Upon graduation, the student should be able to develop a good command of this subject matter through additional practice.

METHOD OF ASSESSMENT (GRADING METHOD):

The student will be assessed by written tests only. There will be periodic topic tests at times mutually agreed upon (usually) by students and instructor. A letter grade will be assigned for the student's test results.

See also the Mathematic's department annual publication "To the Mathematic Student" which is presented to the students early in each academic year.

TEXTBOOKS:

Calculus for Engineering Technology; W.R. Blakeley

ELECTRICAL/ELECTRONIC TECHNOLOGY: COMPUTER ENGINEERING MATHEMATICS

MTH 551

TOPIC NO.	PERIODS	TOPIC DESCRIPTION	REFERENCE
1	10	Number Systems and Boolean Algebra Binary, Octal, Lexadecimal and binary coded decimal systems Conversions Addition, Subtraction, multiplication and division in binary systems And gates. Or Gates and complementing circuits Truth Tables Rules of Boolean Algebra including DeMorgan Theorems	Major Subject text
2	6	Simplifications Graphs and Analytic Geometry Power functions Straight line Conic sections	Ch. 1,2
3	14	Differentiation Del tan notation Derivatives by delta method Derivatives by rule Applications (electrical) Maximum and Minimum Higher Order derivatives Applications of maximum/minimum	Ch. 3,4
4	14	Differentials, Implicit Differentiation The differential Implicit Differentiation Product rule	Ch. 5, 6